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ABSTRACT 

We present an algorithm to approximately solve certain stochastic nonlinear 

programs through sample-average approximations.  The sample sizes in these 

approximations are selected by approximately solving optimal-control problems defined 

on a discrete-time dynamic system.  The optimal-control problem seeks to minimize the 

computational effort required to reach a near-optimal objective value of the stochastic 

nonlinear program. Unknown control-problem parameters such as rate of convergence, 

computational effort per solver iteration, and optimal value of the program are estimated 

within a receding horizon framework as the algorithm progresses.  The algorithm is 

illustrated with single-commodity and multi-commodity network flow models.  Measured 

against the best alternative heuristic policy we consider for selecting sample sizes, the 

algorithm finds a near-optimal objective value on average up to 17% faster.    Further, the 

optimal-control problem also leads to a 40% reduction in standard deviation of 

computing times over a set of independent runs of the algorithm on identical problem 

instances.  When we modify the algorithm by selecting a policy heuristically in the first 

stage (only), we improve computing time, on average, by nearly 47% against the best 

heuristic policy considered, while reducing the standard deviation across the independent 

runs by 55%. 
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EXECUTIVE SUMMARY 

Optimization of stochastic programs is challenging in part because there is no 

closed-form solution, and because solution algorithms tend to be computationally 

intensive.   The difficulty arises because the objective function and/or constraint 

functions are given by expectations that cannot be evaluated exactly.  Hence, 

approximations are usually employed in optimization algorithms to estimate such 

functions.  One class of such algorithms uses sample-average approximations within a 

nonlinear approximating problem (AP).  However, there is no straightforward means to 

determine a sample size for use in these algorithms.  Most algorithms resort to using 

heuristic policies for determining an appropriate sample size.  In addition to sample size, 

because the AP is nonlinear, a suitable number of iterations of a nonlinear programming 

solver must also be selected for solving it.  Most often, the number of solver iterations is 

selected prior to calculations beginning.  It is often difficult in practice to select sample 

sizes and number of solver iterations that balances accuracy and computational effort. 

We develop a discrete-time dynamic system, the optimal control of which 

determines a policy for sample size and a number of solver iterations for use in the AP.  

The optimal-control problem seeks to minimize the computational effort required to 

reach a near-optimal objective value of the stochastic nonlinear program.  The optimal-

control problem is approximately solved within a receding horizon framework, allowing 

repeated estimation of unknown parameters.   

Empirical studies are performed on nonlinear single and multiple-commodity 

network-flow problems on a grid constructed of 50 nodes with 134 arcs.  The optimal-

control problem selects sample sizes and solver iterations that lead to near-optimal 

objective values in less time than alternative heuristic policies in all instances tested.  

Measured against the best alternative policy we consider for selecting sample sizes, the 

algorithm finds a near-optimal objective value on average up to 17% faster.  Further, the 

optimal-control problem also leads to a 40% reduction in standard deviation of 

computing times over a set of independent runs of the algorithm on identical problem 



 xiv

instances.  The unknown parameters in the optimal-control problem may be poorly 

estimated prior to the first stage of the algorithm, which may result in a poor policy for 

the first stage.  When we modify the algorithm by selecting a policy heuristically in the 

first stage (only), we improve computing time, on average, by nearly 47% against the 

best heuristic policy considered, while reducing the standard deviation across the 

independent runs by more than one-half. 
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I. INTRODUCTION 

A. BACKGROUND 

Optimization of stochastic programs has become a focus of much research over 

the past decade.  These problems are of particular interest in part because they have no 

closed-form solutions and solution algorithms tend to be computationally intensive.   The 

difficulty arises because the objective function and/or constraint functions are given by 

expectations that cannot be evaluated exactly.  Hence, approximations are usually 

employed to estimate such functions.  Approximations may provide precise, high-fidelity 

estimates with high computational cost, or may provide low fidelity with less 

computational cost.  This research focuses on finding a balance between these two 

important factors.  

Numerous design and planning applications require the optimization of 

stochastic-programming problems.  In aerodynamics, various problems arise in the 

optimization of a three-dimensional wing design (Alexandrov et al., 2001).  In one civil-

engineering discipline, problems arise from structural optimization of bridges or support 

structures subject to failure probability constraints (Polak and Royset, 2007; Royset and 

Polak, 2007).  Such problems may seek to optimize the cross-sectional dimensions of a 

support column consisting of a material of particular yield strength subjected to various 

bending moments.  Structural loading of the support column weighs heavily on design 

considerations due to inherent failure probabilities of the materials.  Many additional 

examples of stochastic-programming problems can be found in the areas of logistics and 

supply-chain planning.  Numerous papers discuss solution methodologies for optimal 

design of supply-chain management including, but not limited to productions lines, 

consumer demand, availability of raw materials, warehousing and transportation of 

goods.  In Santoso et al. (2003), a proposed stochastic-programming model and solution 

algorithm are used to compute high-quality solutions to large-scale stochastic supply 

chain design problems.  Poojari et al. (2006) presents a method to solve discrete resource 
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allocation problems in the presence of future uncertainties for supply-chain planning and 

Sox and Muckstadt (1997) describe a finite-horizon stochastic optimization model for a 

stochastic lot-scheduling problem. 

One approach to approximately solve optimization problems defined in terms of 

expectations is to use Sample Average Approximations (SAA), e.g., (Ruszczynski and 

Shapiro, 2007).  That is, one or more approximating problems (APs) are solved, 

problems that replace each expectation with a standard sample average approximation.  

The AP may be viewed as a deterministic mathematical program, a nonlinear 

mathematical program in our case.  A very large sample size in the sample-average 

approximation will provide a precise estimate of the expected-value function, but the 

computational effort required to solve the AP for this sample size may be far too high.  

As an alternative, this research examines the computational effort associated with solving 

a sequence of APs where an efficient sample size is chosen at each stage of the sequence.  

Coarse approximations are made early and, as the calculations evolve, adaptive 

adjustments to the sample size are made, increasing the precision of the results.  This 

adaptive control strategy is intuitively appealing as gains towards optimality come 

initially at low computational cost through coarse approximations, and fidelity is 

increased as larger samples are used near the completion of the algorithm.    

In addition to finding an efficient sample size for use with calculations, we are 

also concerned with selecting an efficient number of iterations for the chosen nonlinear 

programming (NLP) solver used in solving various instance of the AP.  The number of 

solver iterations has a profound impact on computational cost as well.  Our approach will 

determine an efficient number of iterations for the NLP solver to carry out along with an 

efficient sample sizes for defining the APs as the overall algorithm progresses. 

B. LITERATURE REVIEW 

Stochastic programming solution methodologies incorporate both mathematical-

programming techniques and statistically motivated approximations.  These 

approximations are generally internal or external in nature.  The distinction is found in 

the management of sample selection.  With external methodologies (Royset and Polak, 
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2007), samples are taken before the solution algorithm begins (or they could be taken 

before the algorithm begins), and no additional sampling is performed during the 

optimization process.  In internal methods (Higle and Zhao, 2004), samples are intrinsic 

to the iterative solution process, performed whenever the algorithm requires the 

estimation of expectations.  An alternative to an external sampling approach with a fixed 

sample size is to vary the sample size during the calculations using closed-loop or open-

loop techniques (Polak and Royset, 2007).  With a closed-loop technique, the sample size 

is adapted during the calculations.  For example, if the objective value in a given iteration 

falls below a moving floor, the sample size may be increased.  On the other hand, in an 

open-loop technique, sample sizes are preassigned (Polak and Royset, 2007).  In most 

cases, the sample sizes increase as iterations progress towards an optimal solution.   

He and Polak (1990) describe a method for handling progressively finer stages of 

discretization for semi-infinite optimization problems, which uses a precision-adjustment 

strategy relevant to the present work.  They formulate an auxiliary optimization problem 

that determines the number of solver iterations and precision level at different stages of 

the calculations so that overall computing time is minimized approximately.  The present 

work is motivated by this study.   

C. RESEARCH GOAL 

The goal of this research is to find an efficient way of selecting sample size and 

number of solver iterations for use in solving a nonlinear stochastic program through the 

solution of a sequence of APs that use sample average approximations.  We formulate a 

discrete-time optimal-control problem that we solve approximately to obtain a precision-

adjustment policy for determining the sample size and number of solver iterations.  This 

policy makes coarse approximations in the early stages of the problem and, as 

progression to the optimal objective value is achieved, the sample size increases to ensure 

convergence to a locally optimal solution.  The optimal-control problem is formulated 

with the objective to minimize the amount of computational work necessary to reach a 

locally optimal solution to the AP.   
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D. STRUCTURE OF THESIS AND CHAPTER OUTLINE 

This thesis is organized into five chapters including the Introduction.  Chapter II 

provides a discussion on the formulation of a nonlinear stochastic problem, an outline of 

the algorithm we intend to use to solve stochastic nonlinear network flow problems and 

introduces our precision-adjustment problem.  Chapter III introduces the methodology we 

propose to use for selecting an efficient sample size and number of solver iterations in the 

solution algorithm; stopping criterion are also discussed.  Chapter IV formulates and 

solves two types of stochastic nonlinear network flow problems.  It compares our 

algorithm’s efficiency with the efficiency of similar algorithms that use heuristic sample-

size and solver-iteration policies. Chapter V summarizes the research and presents the 

main findings and insights.   
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II. PROBLEM DEFINITION AND FORMULATION 

This chapter formulates a stochastic nonlinear program and presents a conceptual 

algorithm we use as our solution approach.  Further, it describes the precision-adjustment 

problem we face within the conceptual algorithm.  

A. PROBLEM FORMULATION 

This section describes the formulation of the “expected-value problem” and an 

approximating problem which will be used as a surrogate to approximately solve the 

expected-value problem.  

1. Expected-value Problem 

Consider the optimization of, say, an engineering design or logistics problem 

defined by the random function ( , )F x ω , where nx X∈ ⊂ ¡ is a vector of continuous 

decision variables and ω  is a vector of continuous random variables defined on the 

probability space ( , , )F PΩ .  This situation results in a difficult stochastic optimization 

problem of the form: 

 min { ( ) : E[ ( , )]}
nx X

f x F x ω
∈ ⊂

=EP :   
¡

, (2.1)  

where X is a compact subset of n¡ representing feasible solutions of the problem, and E 

is the expectation taken with respect to the known probability distribution P of the 

random vector ω .  We assume that, for every x X∈ , the expected-value function is well 

defined and smooth (continuously differentiable).  Further, we denote the optimal value 

of (2.1) as f ∗  with a set of optimal solutions denoted by X*.  Further we indicate a set of 

ε-optimal solutions by X ε
∗ , i.e., for any 0ε ≥  

 : { | ( ) }.X x X f x fε ε∗ ∗= ∈ − ≤  (2.2) 

Because the distribution of ( , )F x ω  is unknown, we cannot compute the 

expectation in closed form, so we approximate the expected-value function by the 
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sample-average estimator discussed below.  Uncertainty may also be introduced in the 

constraint functions defining X; however, our research focuses only on uncertainty in the 

objective function.  

2. Approximating Problem 

To approximate ( ) E[ ( , )]f x F x ω=  we use a sample average defined by: 

 
1

1: ( , )
N

j
N

j

f F x
N

ω
=

= ∑ , (2.3) 

where 1 2, ,..., Nω ω ω , is a sample of size N consisting of independent, identically 

distributed (iid) random variables.  Moreover, we define an approximating problem (AP): 

 min ( )Nx X
f x

∈
AP :    , (2.4) 

with an optimal value denoted by Nf ∗ .  We refer to (2.1) and (2.4) as the “expected-

value” and “approximating problems,” respectively. 

The expected-value function, for instance, may be represented by the function 

depicted by the solid line in Figure 1.  This function, as stated above, cannot be computed 

in closed form, so we approximate the function’s form by the sample average as shown in 

Figure 1.  As discussed in Section 3 below, we expect the sample average to take the 

form of the expected-value function as the sample size approaches infinity.  It is known 

that solving the AP with an appropriate sample size provides a reasonable approximation 

to the solution to EP (Ruszczynski and Shapiro, 2007). 

x

f(x
)=

E
[F

(x
,ω

)]

( )Nf x

( )f x

x

f(x
)=

E
[F

(x
,ω

)]

x

f(x
)=

E
[F

(x
,ω

)]

( )Nf x

( )f x

 
Figure 1.   Expected Value function compared to Sample Average function 
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3. Properties of Sample Average 

Monte Carlo simulation can be used to generate an iid sample of 'sω  of size N to 

obtain 1 2( , ), ( , ),..., ( , )NF x F x F xω ω ω  for use in (2.3).  It is well known that ( )Nf x  is an 

unbiased estimator of ( )f x  i.e., 

 
2

E[ ( )] ( ) ,

Var[ ( )] ( ) / ,
N

N

f x f x

f x x Nσ

=

=
 

where  

 2 ( ) Var( ( , ))x F xσ ω= . 

Because the generated sample is iid and given rather weak general assumptions, it 

follows from the Law of Large Numbers (LLN) that ( )Nf x  converges pointwise to ( )f x  

with probability one, as N →∞  (Ruszczynski and Shapiro, 2007).  Therefore, we would 

expect the optimal value and optimal solution of the AP to converge to those of EP, as 

N →∞ .  This is made precise in the following proposition. 

Proposition 1.  (Prop. 4.2; Ruszczynski and Shapiro, 2007).  If the pointwise 

LLN holds, i.e., ( )Nf x  converges to ( )f x  uniformly on X, with probability one 

as N →∞ , then  * converges to Nf f∗  with probability one, as N →∞ .   

Moreover, if 2E[ ( , ) ]F x ω < ∞ , then it follows under weak assumption from the 

central limit theorem (CLT) that ( ( ) ( ))N xN f x f x Y− ⇒ , where ⇒  denotes 

convergence in distribution and xY is a zero-mean normal random variable with variance 

2 ( )xσ   (Ruszczynski and Shapiro, 2007).  Hence, for a large N, ( )Nf x  is approximately 

normally distributed with mean ( ),f x  and variance 2 ( ) /x Nσ .  Figure 2 illustrates this 

result.   

We know that 

 [ ]min E ( ) E min ( )N Nx X x X
f x f x

∈ ∈
⎡ ⎤≥ ⎣ ⎦ , 
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and, because ( )Nf x  is an unbiased estimator of ( )f x , it follows that *E Nf f∗⎡ ⎤ ≤⎣ ⎦ .  That 

is, the AP’s optimal objective value is a downward-biased estimate of the optimal 

objective value of the EP. 

 

x

f(x
)=

E
[F

(x
,ω

)]

f(x)=E[F(x,ω)]

( )Nf x

x

f(x
)=

E
[F

(x
,ω

)]

f(x)=E[F(x,ω)]

( )Nf x

 
Figure 2.   Approximate Normal Distribution of ( )Nf x  

B. ALGORITHM 

We consider a conceptual algorithm of the following form for approximately 

solving EP. 

Conceptual Algorithm (CA)  

  Data:  Optimality tolerance ε ≥ 0; initial point 1
0x X∈ . 

  Step 1:  Set stage counter k = 1. 
  Step 2:  Determine kN  and kn . 
  Step 3:  Carry out kn  iterations of a solver applied to:  

                                     min ( )
kNx X

f x
∈

, started with 0
kx  using the kN  found at Step 2. 

  Step 4:  If 
k

k
nx X ε

∗∈  , then Stop.  Else set 1
0 k

k k
nx x+ = , replace k by k+1 and 

    go to Step 2. 
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We refer to Steps 2-4 as a “stage.” CA uses a single set of sample realizations for 

each stage, but all samples are independent between stages.  For purposes of this 

research, we have chosen the Projected Gradient Method (PGM) as our nonlinear 

programming solver (for example, see Polak 1997, p. 66).  However, it is worth 

mentioning that any linearly convergent nonlinear programming solver may be used.  Our 

goal is to determine  and k kN n  for each stage that approximately minimizes the total 

computational effort required by CA to reach a near-optimal objective value to EP. We 

refer to the rule for selecting and k kN n as a “policy.”  

C. PRECISION-ADJUSTMENT PROBLEM 

We define the task of selecting the appropriate kN  and kn  for each stage of the 

CA as the Precision-Adjustment Problem (PAP).  We formulate PAP as a particular 

discrete-time optimal-control dynamic program, which is discussed in the next chapter.  

PAP is solved approximately using dynamic programming to obtain a precision-

adjustment policy for determining kN  and kn .  This policy adaptively adjusts the sample 

size and number of solver iterations between stages.  PAP is formulated to minimize the 

amount of computational work necessary to reach a near-optimal objective value of the 

stochastic nonlinear program.  After carrying out kn  solver iterations, we abandon further 

progress to the locally optimal solution for the current AP, and use this iterate as a warm 

start for the next stage of CA.   
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III. METHODOLOGY 

This chapter describes how we control the precision within the conceptual 

algorithm and how we estimate the parameters for the precision adjustment.  Further, the 

chapter presents the criterion by which we stop the conceptual algorithm (in Step 4). 

A. PRECISION ADJUSTMENT CONTROL 

This section presents a discrete-time dynamic system, the optimal control of 

which will determine a sample size kN and a number of solver iterations kn  to be used 

for each stage of CA.   

1. Controlling Sample Size 

The dynamic system described in Royset (2009) lays the foundation for this 

research.  Following his approach, we first identify the asymptotic distributions of the 

progress made by CA.  We assume that the solver used in Step 3 of CA is uniformly 

linearly convergent (see Royset, 2009), i.e., there exists a ( )0,1θ ∈  such that 

( ( )) ( ( ) )N N N N Nf P x f f x fθ∗ ∗− ≤ −  for all x X∈  and N ∈¥ , where {1,2,3,...}=¥ and 

( )NP x  is the iterate found after carrying out one iteration of the solver used in the CA 

starting from x  with sample size N .  We refer to θ as the rate-of-convergence 

coefficient.  We let ( )k

k

n
NP x  denote the iterate from the solver found at stage k, after kn  

iterations with a sample of size kN  starting from x.  It follows from the assumption of 

linear convergence and from the optimality of 
kNf ∗ , that for any x X∈ , 

 ( ( )) ( ( ) )k k

k k k k k k

n n
N N N N N Nf f P x f f x fθ∗ ∗ ∗≤ ≤ + −  

with probability one.  Moreover, based on rather weak assumptions and theorems 

introduced in Royset (2009), if and k kN n  are large, ( )
k k

k
N nf x  is approximately 

distributed as 
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1

1 2( ( ( ) ), ( ) / )k

k

n k
n kf f x f x Nθ σ

−

∗ − ∗ ∗+ −N , (3.1) 

where ( , )µ σN  represents a normally distributed random variable with mean µ  and 

variance σ .  Figure 3 illustrates a possible approximate distribution of ( )
k k

k
N nf x  as stated 

from this conclusion. 

 

1

1( ( ) )k

k

n k
nf f x fθ

−

∗ − ∗+ −
1

1( ( ) )k

k

n k
nf f x fθ

−

∗ − ∗+ −  
Figure 3.   Approximate Normal Distribution of ( )

k k

k
N nf x  

Further, Royset (2009) shows that we can heuristically approximate the 

distribution ( )
k

k
nf x  with truncation at f ∗  to account for the fact that 

( )  for all f x f x X∗≥ ∈ .  Therefore our approximate distribution for 
1

1( ( ))k

k k

n k
N nf P x

−

−  

conditional on 
1

1
k

k
nx

−

−  is: 

 
1

1 2( ( ( ) ), ( ) / , )k

k

n k
n kf f x f x N fθ σ

−

∗ − ∗ ∗ ∗+ −N , (3.2) 

where N  denotes a truncated normally distributed random variable based on 

1

1 2( ( ( ) ), ( ) / )k

k

n k
n kf f x f x Nθ σ

−

∗ − ∗ ∗+ −N , with a truncation threshold f ∗ .  Figure 4 

illustrates this distribution.  As discussed in Subsection 2, we can control this distribution 

by changing  and k kN n . 
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f ∗

1

1( ( ) )k

k

n k
nf f x fθ

−

∗ − ∗+ −f ∗

1

1( ( ) )k

k

n k
nf f x fθ

−

∗ − ∗+ −f ∗

1

1( ( ) )k

k

n k
nf f x fθ

−

∗ − ∗+ −  
Figure 4.   Approximate Truncated Normal Distribution for ( )

k

k
nf x  

Since (3.2) approximately holds for any k, we can use that expression to estimate 

the quality of a solution generated by the CA after any number of stages given a selection 

of sample sizes and number of iterations.  The situation is illustrated in Figure 5, where 

the 
0

0( )nf x  and a selection of 1 1( , )N n  determines the probability distribution of 
1

1( )nf x .  

Given an outcome of that distribution, a selection of 2 2( , )N n , gives the distribution of 

1

1( )nf x , etc. 

The values for 2 ,  ,  and ( )f xθ σ∗ ∗  in the distribution (3.2) are unknown, however.  

Since 
1

1
k

k
nx

−

−  is known at the beginning of the kth stage, we can estimate 
1

1( ),
k

k
nf x

−

−  and we 

construct estimation schemes as shown in Subsection B below to 

estimate 2 ,  ,  and ( )f xθ σ∗ ∗ .  We now develop a dynamic program as discussed in Royset 

(2009).  
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n

n
n

f x
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f x
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( ) is a truncated normal with distribution  

( ( ( ) ), ( ) / , )
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

 

Figure 5.   Truncated normal distributions of function values 

2. Dynamic Program 

Beginning at stage k, we define estimates of 
1

1 2( ),  ,  ,  and ( )
k

k
nf x f xθ σ

−

− ∗ ∗  as 

2,  ,  ,  and fr r r rθ σ
∗ respectively and as in Royset (2009), use (3.2) as a basis for a model 

of   ( ),  ,  1,  2,...
l

l
nf x l k k k= + + . We let ,  ,  1,  2,...lf l k k k= + +  denote our estimates of 

( ),  , 1, 2,...
l

l
nf x l k k k= + + .  Controls are defined as 1 1 2 2( , ),  ( , ),  ( , ),...k k k k k kN n N n N n+ + + +  

and the dynamic equation for the state lf  is  

 21 ( ( ), / , ),  ,  1,  2,...ln
l l lf r r f r r N r l k k kθ σ

∗∗ ∗
+ = + − = + +N  (3.3) 

with initial condition k ff r=  and where the equality indicates equality in distribution. 

We define ( , )c N n  to be the computational cost of carrying out n iterations of the 

solver applied to the AP with a sample of size N, where the terminal state is characterized 

by (1,0) 0c = .  Terminal states discussed in Royset (2009) are defined by X ε
∗ , and are 

translated for our case as  

 : { | }T rξ ξ ε∗= ∈ − ≤¡ . 
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The set of feasible controls ( )R ξ  are defined as: If 

,  then ( ) {(1,0)};   otherwise, ( ) .T R Rξ ξ ξ∈ = = ×¥ ¥   We seek an admissible stationary 

policy : {0}τ → × ∪¡ ¥ ¥  with ( ) ( )l lf R fτ ∈  which minimizes the computational cost 

by evaluating a planning horizon of feasible controls ( , )k kN n , 1 1( , )k kN n+ + , 

2 2( , ),...k kN n+ + .  The sample-size control-problem stated in Royset (2009) which 

accomplishes this task is 

 , ( , , , ) : limsup ( ( ))
s

k f l
s l k

J r r r r E c fτ θ σ τ∗

→∞ =

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑ , 

subject to constraints (3.3).  Here E is the expectation with respect to the disturbances on 

the stages k, k + 1,…, s due to the truncated normal distribution in (3.3)  Finally, we 

define the surrogate sample-size control problem by  

  
 ,( , , , ) :     inf ( , , , )k f k fr r r r J r r r rθ σ τ θ στ

∗ ∗S - SSCP . (3.4) 

 

 
End of

k -1
End of  

k

f *

0( )kf x

f ε∗ +

Small kN

Large kN

End of
k -1

End of  
k

f *

0( )kf x

f ε∗ +

Small kN

Large kN

 
Figure 6.   Representative illustration of dynamic program 

Now, assume we have estimated 
1

1
0( ) ( )

k

k k
nf x f x

−

−=  at the beginning of stage k; see 

Figure 6.  We wish to choose a pair ( , )k kN n  that will be computationally efficient so that 

at the end of the kth stage shown in Figure 5 we have progressed toward f ∗  at a 

“reasonable” computational cost.  As shown by the dotted line in Figure 5, we define a 
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tolerance ε  to determine a range of near-optimal objective values that are acceptable for 

selection as f ∗ .  Further, we assume that the computational cost of the kth stage is 

defined as ( , )k k k kc N n N n= .  Then, from (3.2), we see that selections of  and k kN n  have 

varying effects.  A small kN  increases the variability in the truncated distribution 

whereas a large kN  compresses the distribution, reducing the variability.  The number of 

solver iterations also impacts the cost by affecting the mean of the truncated distribution 

in (3.2).  As kn  increases, the mean of the distribution moves closer to f ∗ , but also 

increases the computational cost.  The optimal policy of ( , , , )k fr r r rθ σ
∗S - SSCP  balances 

the computational cost of selecting large and k kN n  and the likelihood that the CA 

reaches a near-optimal objective value in the current stage.  Hence, we expect that policy 

to be reasonably efficient even though it is based on several approximations.  

To solve ( , , , )k fr r r rθ σ
∗S - SSCP  approximately, we discretize the state space and 

the truncated normal distribution and then apply backward recursion to the resulting 

dynamic program.  We refer to the policy computed in this manner as Model-Predictive 

Control (MPC).  We adopt the discretization technique, as in Royset (2009), on a 

planning horizon of 10 future stages.  A general depiction of the discretization scheme 

applied to Figure 6 is shown in Figures 7 and 8.  An example of a relatively low cost 

selection of  and k kN n  is shown in Figure 7.  Here, a relatively small Nk with a choice of 

small nk provides little gains toward f ∗ .  Although progress is made toward f ∗ , 

additional stages of CA are necessary arrive at a near-optimal value. 
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End of
k -1

End of  
k

f *

0( )kf x

f ε∗ +

End of
k -1

End of  
k

f *

0( )kf x

f ε∗ +

 
Figure 7.   Discretization of truncated normal with small  and k kN n  

 
 

End of
k -1

End of  
k

f *

0( )kf x

f ε∗ +

 
Figure 8.   Discretization of truncated normal with large  and k kN n  

Figure 8 depicts a situation where a large Nk and a large nk provide a near-optimal 

objective value close to f ∗  but at a high computational price.  For this situation, future 

stages of CA may not be necessary in order to achieve a near-optimal objective value. 

B. PARAMETER ESTIMATION 

We rely on estimates of the parameters 
1

1( ),  ,  ,
k

k
nf x f θ

−

− ∗  and 2 ( )xσ ∗  in 

( , , , )k fr r r rθ σ
∗S - SSCP  as we describe next.   
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1. Estimating Variance 

Upon completion of kn  iterations of the solver with a sample of size kN  in stage 

k, the set of iterates 0 0{ }  and function values { ( )}k k

k

n nk k
i i N i ix f x= =  are known.  We use this 

information to estimate parameters 2,  ,  ,  and fr r r rθ σ
∗ .  First, we discuss our estimate for 

2r
σ

.  We let 2
1ˆkσ +  denote our estimate of 2 *( )xσ  for stage k + 1 and set it equal to the 

sample variance at the last iterate, i.e.,  

2
2 2

1
1

1ˆ : ( ( , ) ( ))
1

k

k k k

N
k j k

k n N n
jk

r F x f x
Nσ

σ ω+
=

= = −
− ∑ . 

2. Estimation of Rate-of-Convergence Coefficient and Optimal Objective 
Value 

Next, we determine rθ , the estimate of the rate-of-convergence coefficient θ  of 

the nonlinear programming solver used in Step 3 of CA.  We adopt the method in He and 

Polak (1990) to estimate θ , but modify it slightly, adding an exponential smoothing step 

to avoid large changes in the estimate.  As the estimate of θ  is updated after each stage, 

we let k̂θ  be the estimate of θ  available at the beginning of stage k and set k̂rθ θ=  in 

( , , , )k fr r r rθ σ
∗S - SSCP .   

As in Royset (2009), the (biased) estimate of f ∗  at the beginning of the kth stage 

is computed by a weighted average of estimates of ,  1, 2,..., 1
lNf l k∗ = − , and is denoted by 

k̂f
∗ .  Unlike the approach used by Royset, k̂f

∗  is computed with a fixed, conservative 

estimate of the rate of convergence denoted by θ .  The meaning of “conservative” is 

discussed in more detail in the explanation of Step 6 of Subroutine PE below.   

Subroutine PE(k, k̂θ k̂f
∗ , 0{ ( )} k

k

nk
N i if x = ) 

 Parameters: Exponential smoothing parameter (0,1)ψ ∈ , conservative estimate  
  (0,1)θ ∈  of rate of convergence θ  and tolerance 0θε > . 
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 Input data:  Previous stage index k; estimates k̂θ  and k̂f
∗ ; function values  

  0{ ( )} k

k

nk
N i if x =  from stage k. 

 Output:  Returns estimates 1 1
ˆˆ and k kfθ ∗

+ + . 

 Step 1:  Set ˆ
k̂θ θ= . 

 Step 2:  Estimate the minimum of ( )
k

k
N nf x  by: 

1

0

ˆ( ) ( ( ))1
ˆ1

kk
k k k

k

n ik kn
N n N i

n i
ik

f x f x
b

n
θ

θ

−−

−
=

−
=

−
∑  

 Step 3:  Solve least-square problem: 
2

, 0
( , ) arg min (log( ( ) ) log )

k

k

n
k

N i
a b i

a b f x b i a b
=

= − − −∑  

 Step 4:  If ˆ ˆ| | ,  set  and go to Step 5.a aθθ ε θ− < =   Else, set ˆ aθ =  and go to Step 
2. 

 Step 5:  Set 1
ˆ ˆ ˆ(1 )k kθ ψθ ψ θ+ = + −  

 Step 6:  Compute conservative estimate of the minimum value of ( )
k

k
N nf x  

0,1,... 1

( ) ( )
ˆ : min

1

k

k k k

kk

n ik k
N n N i

k n ii n

f x f x
m

θ
θ

−

−= −

−
=

−
 

 Step 7:  Estimate f ∗ : 

1

1

1

1 1

ˆ ˆˆ:
k

k
lk l

k kk k
k li l

NNf m f
N N+

−

∗ ∗=

= =

= + ∑
∑ ∑

 

Step 8:  Return 
11

ˆˆ  and 
kk fθ
+

∗
+  

From our assumption of a uniformly linearly convergent solver, it follows that 

( ( ) ( )) / (1 )k k

k k k k

n i n ik k
N N n N if f x f xθ θ− −∗ ≥ − −  for all i = 0, 1, 2, …, 1kn − .  Step 2 averages 

these lower-bounding estimates with the current estimate of θ  and uses this as an 

estimate of 
kNf ∗ .  With this estimate, we compute an estimate of the rate-of-convergence 

coefficient in a least-squares sense.  That is, we use log-linear regression to compute the 

rate-of-convergence coefficient to best fit the sequence 0{ ( )} k

k

nk
N i if x = .  We define a 

tolerance for computing the rate-of-convergence coefficient, denoted by θε , which 



 20

determines when to terminate the regression technique.   Next, we perform exponential 

smoothing so as not to let the estimate of θ  vary too much from one stage to another.  

The value ˆ km  in Step 6 of Subroutine PE is guaranteed to be a lower bound on 
kNf ∗  only 

if θ θ≥ .  Hence, we recommend θ  be set to a value close to 1.  Since 1k̂f
∗
+  is simply the 

weighted average of ˆ ,  1, 2,...,lm l k= , and E[ ]Nf f∗ ∗≤  (see Chapter II, Section A, 

Subsection 3), we therefore find that 1k̂f
∗
+  is a lower bound on f ∗ , on average, when 

θ θ≥ . 

C. STOPPING CRITERION 

We could implement a stopping criterion based upon a hypothesis test of Karush-

Kuhn-Tucker (KKT) conditions as developed in Ruszczynski and Shapiro (2007).  As 

stated in Ruszczynski and Shapiro (2007), suppose that the feasible set X is defined by 

equality and inequality constraints in the form 

 : { : ( ) 0,  1,..., ;  ( ) 0,  1,... },n
i iX x g x i q g x i q p= ∈ = = ≤ = +¡  

where the ( )ig x  are smooth deterministic functions.  If only equality constraints are 

present and the gradient vectors ˆ( ),  1,...,ig x i q∇ =  are linearly independent, then the 

hypothesis test of KKT conditions can be based upon an asymptotically noncentral chi-

square distribution.  If the assumption of linearly independent gradient vectors cannot be 

met, a degenerate solution is presented due to redundancy in the constraint functions.  In 

the case of both equality and inequality constraints, a similar result is available (see 

Ruszczynski and Shapiro, 2007), which also relies on the linear independence of 

gradients of active constraints.  Since such linear-independence assumptions may often 

fail in practical application, we have chosen to adopt an approach using optimality gaps 

as defined by Mak et al. (1999), and similarly by Ruszczynski and Shapiro (2007).  We 

base our stopping criterion upon this approach with a small modification. 
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With the iterate 
k

k
nx  found at the completion of stage k, we again estimate ( )

k

k
nf x  

as before, with ( )
k

k
nN

f x∗  using a new independent sample of size N ∗ .  Here we elect to 

use a large sample size to obtain an accurate approximation of ( )
k

k
nf x .  Calculation effort 

is not substantially increased by this procedure as we are not performing an optimization.  

From the central limit theorem, a probabilistic upper bound on f ∗  is approximately 

normally distributed with mean ( )
k

k
nf x  and variance 2 ( ) /

k

k
nx Nσ ∗  for large N ∗ . 

The modification of the method described in Mak et al. (1999) occurs in our 

construction of a lower bound as described in Subroutine PE.  While Mak et al. (1999) 

use the average of the optimal values of a set of APs, we construct a lower bound on f ∗  

by averaging lower bounds on optimal values of the APs for each stage.  Our method 

tends to be more conservative as it is based upon an assumption of a rate of convergence.  

From Royset (2009), we see that our lower bound is approximately normally distributed 

with mean f ∗  and variance 2
1

( ) / ,k
ll

x Nσ ∗
=∑  for large 1 2 1 2, ,...,  and , ,...,k kN N N n n n .  

Hence the inequality 

 ( ) 1

2 2
1 1 1

ˆ ( )
Prob ( )  

ˆ ˆ/ /
k

k

k
k nk N

n k
k k ll

f f x
f x f

N N

ε
ε

σ σ

∗
∗
+∗

∗
+ + =

⎛ ⎞+ −⎜ ⎟≤ + ≥ Φ⎜ ⎟⎜ ⎟+⎝ ⎠∑
       (3.5) 

holds approximately.  We therefore stop the calculations when the right-hand side in (3.5) 

exceeds a selected confidence level δ , typically 0.95 or 0.99. 
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IV. COMPUTATIONAL STUDY 

This chapter presents a computational study of two network-flow problems to test 

how well Model-Predictive Control reduces computation times compared to alternative 

policies for selecting sample sizes.  We define two network-flow problems with random 

congestion and present results of Model-Predictive Control as compared to heuristic 

control of sample sizes. 

A. SINGLE-COMMODITY NETWORK FLOW 

To develop a single-commodity flow problem (SCF) for testing, we consider the 

generic congestion model for single-commodity flows as described by Ahuja et al., 

(1993, p. 651), but modify it to include random congestion.  Here, the generic model has 

a nonlinear objective function of the form 

 
( , )

min ij

x X i j A ij ij

x
M x∈

∈ −∑ , (4.1) 

where ijM  is the nominal capacity of arc (i, j) and ijx is the flow of a single commodity 

on arc (i, j).  For review of commodity flow and congestion modeling we refer the reader 

to pages 109-124 in Hearn et. al. (2001), and to Marcotte and Nguyen (1998) and 

Bergendorf et al. (1997).  We first present an SCF problem and then advance to a multi-

commodity flow problem.  Even though the SCF problem is a special case of the 

multiple-commodity flow problem, we present SCF first, due to the relative ease of 

explaining this simpler problem.  

We consider a graph G = (N, A), where N and A are sets of nodes and arcs, 

respectively.  The specific graph considered in this study is shown in Figure 9.  This grid 

network can flow commodity left-to-right, north-to-south and south-to-north, but not 

right-to-left.  The test-problem grid has 50 nodes and 134 arcs.  The start node, denoted 

by s, is the supply source and the terminal node, t, is the demand sink.  Individual costs 

associated with the flow across an arc are assigned as random numbers from a normal 
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distribution with parameters that will be specified, and we define a congestion parameter 

on each arc by generating a log-normally distributed random variable, with parameters 

that will be specified. 

s ts t

 

Figure 9.   Transportation Grid Network 

We formulate an SCF problem as follows: 

 
Indices 

i, j  nodes, ,i j N∈  

(i, j)  arcs ( , )i j A∈  

Data 

ijM   capacity of arc (i, j). 

ijC   unit cost to ship commodity on arc (i, j). 

ijµ   mean of log-normal random variable denoting congestion on arc (i, j). 

2
ijσ   variance of log-normal random variable denoting congestion on arc (i, j). 

D  demand of commodity. 
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Random Variables 

ijω   congestion parameter on arc (i, j); this is a log-normal random variable,  

  with mean 2 and variance ij ijµ σ . 

Decision Variables 

ijx   amount of commodity shipped on arc (i, j). 

Mathematical Formulation 

  
( , )

min   E
(1 )

ij ij

i j A ij ij ij

C x
M xω∈

⎡ ⎤
⎢ ⎥

+ −⎢ ⎥⎣ ⎦
∑          (4.2) 

  
:( , ) :( , )

    if 
s.t.    0  if \{ , }

     if 
ji ij

j j i A i i j A

D i s
x x i N s t

D i t∈ ∈

− =⎧
⎪− = ∈⎨
⎪ =⎩

∑ ∑  

         0 ,          ,ij ijx M i j≤ ≤ ∀  

We note that the expectation in the objective function can be computed by 

evaluating |A| one-dimensional integrals, and thus a simpler method for solving this 

model is available.  However, this model serves as a simple example to illustrate our 

solution approach, which applies to more general situations. 

We assign 500 units of supply at node s, with a corresponding 500 units of 

demand at node t.  Arc capacities are chosen as 100  for all ( , )ijM i j= .  Based on 

preliminary numerical experiments, we find that 0.993θ =  is sufficient to obtain lower 

bounds on 
kNf ∗  in Step 6 of Subroutine PE.   

B. MULTI-COMMODITY NETWORK FLOW  

For testing, we also consider a congestion problem for a multi-commodity flow 

problem in a transportation network (MCF), and reuse the grid network described in 

Subsection A.   The formulation is as follows: 
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Indices 

i, j  nodes, ,i j N∈  

(i, j)  arcs ( , )i j A∈  

p  commodity, {1,2,..., }p P∈  

Data 

ijM   capacity of arc (i, j). 

p
ijC   unit cost to ship commodity p on arc (i, j). 

ijµ   mean of log-normal random variable denoting congestion on arc (i, j). 

2
ijσ   variance of log-normal random variable denoting congestion on arc (i, j). 

pD   demand of commodity p. 

Random Variables 

ijω   congestion parameter on arc (i, j); this is a log-normal random variable, 

  with mean 2 and variance ij ijµ σ . 

Variables 

p
ijx   amount of commodity p shipped on arc (i, j). 

Mathematical Formulation 

  
( , )

min   E
(1 )

p p
ij ij

p
p

i j A ij ij ij
p

C x

M xω∈

⎡ ⎤
⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

∑
∑ ∑

                      (4.3) 

  
:( , ) :( , )

 if 
s.t.      0  if \{ ,  }  ,   

  if 

p

p p
ji ij

j j i A i i j A p

D i s
x x i N s t p

D i t∈ ∈

⎧− =
⎪− = ∈ ∀⎨
⎪ =⎩

∑ ∑  

            ,      ,p
ij ij

p

x M i j≤ ∀∑  
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            0  ,              , ,p
ijx i j p≤ ∀  

For this problem, arc capacity is increased to 150  for all ( , )ijM i j=  to allow for 

increased flow from additional commodities.  We consider two commodities with 

supplies at s equal to 500 and 300 and demands at t equal to 500 and 300, respectively.  

In MCF, preliminary experimentation shows that 0.997θ =  tends to provide a valid 

lower bound of 
kNf ∗  in Step 6 of Subroutine PE and we adopt that value for θ .   

C. COMPUTATIONAL STUDY 

For this computational study, we apply the parameters described next to both SCF 

and MCF.  We use the PGM nonlinear-programming algorithm with Armijo step size 

rule; for example, see, Polak (1997, p. 67) and Bertsekas (1999, p. 31).  The quadratic 

direction-finding problem in the PGM is solved using LSSOL (Gill et al., 1986) as 

implemented in TOMLAB 7.0 (Holmstrom, 2008).  We use parameters 

0.5 and 0.8α β= =  in the Armijo step-size rule and in Subroutine PE use an exponential 

smoothing parameter 1/ 3ψ =  and tolerance 0.0001θε = .   

For stopping criterion, we draw a new independent sample of size 10000N ∗ =  to 

evaluate ( )
k

k
nN

f x∗  and use a stopping confidence level of 0.95δ = .  We use 

2( , ) (3, 4)ij ijµ σ = for all ( , )i j  as parameters for the log-normal distributed random variable 

ijω  representing congestion.  Arc costs and p
ij ijC C  are generated from a normal 

distribution of random numbers with mean 80 and standard deviation 20.  Additionally, 

we set the relative optimality tolerance to 0.01 for use in calculations, i.e., 1
ˆ0.01 kfε ∗
+=  

on stage k.  

For comparison studies, we consider two versions of Model-Predictive Control; 

MPC1 and MPC2.  In MPC1, Model-Predictive Control is applied to all stages of the 

conceptual algorithm, including the first stage.  We find empirically that MPC might 

have poor control in the initial stage when the parameters estimated in 

( , , , )k fr r r rθ σ
∗S - SSCP  are inferior estimates.  Hence, we also consider MPC2, where 
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Model-Predictive Control is used from the second stage of the conceptual algorithm.  The 

first stage uses a predetermined sample size and number of solver iterations.  We 

examine three choices for the first-stage policy resulting in the following three cases of 

MPC2:   

1. MPC2a.  1 1450,  100n N= = , and remaining stages use MPC. 

2. MPC2b.  1 1600,  100n N= = , and remaining stages use MPC. 

3. MPC2c.  1 1900,  100n N= = , and remaining stages use MPC. 

Choices of 1n  for these cases of MPC2 are determined by solving 1 0.01nθ = , 1 0.05,nθ =  

and 1 0.1nθ = , where θ  is the conservative rate-of-convergence coefficient as discussed 

in Chapter 3, Section B, Subsection 2.   

As a basis for comparison, we consider the following heuristic policies: 

1. Fixed policy.  Predetermine and k kN n  and keep fixed throughout each  

  stage of CA. 

2. Additive policy.  Predetermine kn  and add a predetermined number to kN  

  at the beginning of each stage of CA 1(i.e., 50 )k kN N+ = + . 

3. Multiplicative policy.  As in additive policy, predetermine kn , and adjust 

  sample size by a multiplicative factor at the beginning of each stage  

  1(i.e., 1.2 )k kN N+ = .  

We use an initial sample size 1 10N =  for all heuristic policies, except for the 

fixed policy for which 0.5 5000kN N ∗⋅= =  for all k.  In order to use the PGM within 

CA, we must first find an initial feasible solution for both SCF and MCF to start the 

calculations.  We do so by formulating and solving the following linear program in the 

case of SCF: 
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and the following linear program in the case of MCF: 
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We implement our network-flow problems in Matlab Version 7.7.0 on a desktop 

computer running Windows XP with 3.73 GHz processor speed and 3.25 GB of RAM.  

SCF-LP and MCF-LP are solved to find an initial feasible solution for both SCF and 

MCF using the linear programming solver linprog in the optimization toolbox.   

For comparison studies, we record the computing time of CA using each of the 

MPC policies with the computing time for each of the other policies considered.  We 

evaluate each of the heuristic policies with a different predetermined control on the 

number of solver iterations.  Evaluations are run with kn  for all k set at 5, 25, 50, 75 and 

100 iterations.  In the additive approach, the sample size is increased by 100 at the 

beginning of every stage.  For the multiplicative approach, two separate heuristics are 

considered.  First, we evaluate the policy with an adjustment to sample size as 

1 1.5k kN N+ =  for all k and then increase the adjustment control on sample size to 

1 2k kN N+ =  for all k.   
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The results summarized in Table 1 provide average computing times over 20 runs 

of the CA with standard deviations for the SCF problem.  The first column lists the 

individual policies mentioned above for determining ( , )k kN n .  The second and third 

columns give the average and standard deviations, respectively, of the total 

computational times to reach a near-optimal objective value in the SCF problem.   

Policy avg st dev
MPC1 23.17 3.60
MPC2a, n 1 = 450, N 1 = 100 14.87 2.67
MPC2b, n 1 = 600, N 1 = 100 18.38 2.48
MPC2c, n 1 = 900, N 1 = 100 24.77 3.15
Fixed, n  = 5 443.30 2.48
Fixed, n  = 25 638.12 42.84
Fixed, n  = 50 605.40 50.24
Fixed, n  = 75 614.86 38.27
Fixed, n  = 100 631.84 50.60
Additive, n  = 5 398.07 16.78
Additive, n  = 25 87.58 7.78
Additive, n  = 50 49.26 6.76
Additive, n  = 75 41.54 6.81
Additive, n  = 100 40.81 9.08
Mult 1.5, n  = 5 > 1100 -----
Mult 1.5, n  = 25 81.95 13.54
Mult 1.5, n  = 50 31.20 6.31
Mult 1.5, n  = 75 29.85 7.85
Mult 1.5, n  = 100 27.95 5.93
Mult 2.0, n  = 5 > 1100 -----
Mult 2.0, n  = 25 > 1100 -----
Mult 2.0, n  = 50 77.06 7.52
Mult 2.0, n  = 75 35.98 7.34
Mult 2.0, n  = 100 32.56 8.29

SCF Computational Times (sec.)

 
Table 1.   Average and standard deviation of computing times of CA with Model-Predictive 

Control (MPC) policies and heuristic policies applied to SCF. 

In Table 1, the best heuristic policy with respect to computational time is the 

multiplicative policy with a multiplicative factor of 1.5 and 100kn =  for all k.  In 

comparison, MPC1 finds a near-optimal objective value nearly five seconds faster and 
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does so with a 39.3% reduction in standard deviation of computational time over the 20 

independent runs.  MPC2a improves further still, offering a reduction in computing time 

of nearly 47%.  Additionally, the standard deviation between the independent runs drops 

55% as compared to the best heuristic policy.  The computational times recorded do not 

reflect the time required to determine the Model-Predictive Control, i.e., to solve 

approximately ( , , , )k fr r r rθ σ
∗S - SSCP .  We elect to exclude this time because for large, 

real-world problems, computing times for the minimization calculations and checking 

stopping criterion are expected to be considerably larger than computing times for 

determining ( , )k kN n . 

Several policies considered for SCF return results that are costly regarding 

computing times.  In those cases, we terminate the calculations after 1100 seconds and do 

not compute averages: see rows 12, 17, and 18 of Table 1.  For the policies with times 

greater than 1100 seconds, the relatively small number of solver iterations is not 

sufficient to make substantial gains towards f ∗ .  In these cases, kN  grows quite large 

and computing time suffers from the large sample size.  For each of the problems, kN  is 

limited to 400,000 to avoid exhausting computer memory, and in each of these cases, the 

sample size grows to this limit.  

The results summarized in Table 2 for MCF, provide average computing times 

over 20 runs of the CA, along with standard deviations.   
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Policy avg std dev
MPC1 40.70 7.21
MPC2a, n 1 = 450, N 1 = 100 26.46 4.22
MPC2b, n 1 = 600, N 1 = 100 28.84 4.35
MPC2c, n 1 = 900, N 1 = 100 37.57 2.95
Fixed, n  = 5 > 1000 -----
Fixed, n  = 25 891.65 47.96
Fixed, n  = 50 905.67 61.53
Fixed, n  = 75 905.11 58.92
Fixed, n  = 100 891.89 57.60
Additive, n  = 5 612.40 41.05
Additive, n  = 25 143.12 14.81
Additive, n  = 50 79.86 9.91
Additive, n  = 75 66.74 10.75
Additive, n  = 100 54.86 7.24
Mult 1.5, n  = 5 > 1000 -----
Mult 1.5, n  = 25 151.96 33.66
Mult 1.5, n  = 50 48.66 8.86
Mult 1.5, n  = 75 44.41 7.51
Mult 1.5, n  = 100 48.12 12.71
Mult 2.0, n  = 5 > 1000 -----
Mult 2.0, n  = 25 > 1000 -----
Mult 2.0, n  = 50 142.55 46.12
Mult 2.0, n  = 75 61.95 16.52
Mult 2.0, n  = 100 52.64 11.67

MCF Computational Times (sec.)

 
Table 2.   Average and standard deviation of computing times of CA with Model-Predictive 

Control (MPC) policies and heuristic policies applied to MCF. 

As in SCF, a number of the policies make the sample size grow until it hits the 

limit of 400,000, thereby affecting overall computing times.  In these cases we terminate 

the calculations after 1000 seconds and do not compute averages. 

The best heuristic policy for MCF is again a multiplicative policy.  However in 

this larger problem, computational time is best when 75kn =  for all k: compare this to 

SCF, where computational time is best when 100kn =  for all k.  MPC1 improves on this 

computational time by nearly four seconds and does so with essentially the same 

variability of computational time between runs as the best heuristic policy.   
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We see that modifying MPC in the first stage gives further computational savings.  

Policy MPC2a shows an improvement of 40% in overall computing time, on average, and 

improves the standard deviation of computing time by almost 44% over the 20 

independent runs.  These results indicate that while the MPC typically provides a “good” 

policy for selecting ( ,  )k kN n , the estimates of parameters in ( , , , )k fr r r rθ σ
∗S - SSCP  for 

the first stage are rather poor and a heuristic policy may be better in that stage. 

To verify that the stopping test (3.5) does not cause premature termination of CA, 

we compute a lower bound on f ∗  as described in Mak et. al., (1999).  Specifically, we 

run the PGM on the AP with N = 10000 until that algorithm stalls and record the last 

function value.  This is an estimate of Nf ∗ .  We repeat this process 30 times.  By the 

central limit theorem, the average of these function values is approximately normal and 

provides a lower bound f on f ∗ .  We find that in all 160 runs of the MPC policies, the 

probability that the last solution found is no worse than (1 + 0.01) f  is essentially 1.0.  

Hence, the stopping test (3.5) is rather conservative, as zero unsatisfactory solutions is 

well within the 0.05 160 8⋅ =  expected when 0.95δ = . 

MPC1 solves each of the network-flow problems faster than any of the heuristic 

policies considered.  Additional reductions in computing time are gained with MPC2 

where the first stage of the CA is primarily used to estimate parameters in 

( , , , )k fr r r rθ σ
∗S - SSCP  for k > 2. 
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V. CONCLUSIONS 

This thesis develops an efficient optimization algorithm for approximately solving 

stochastic nonlinear programming problems whose objective functions are sample-

average approximations.  We demonstrate improvement in computation times by 

approximately solving a discrete-time optimal-control problem to select a policy of well-

balanced sample sizes and number of solver iterations for each stage of the algorithm.  

This policy, referred to as the Model-Predictive Control policy (MPC), is compared 

against alternative heuristic policies for selecting sample sizes and solver iterations.  

MPC approximately solves a single-commodity network-flow problem up to 17% faster, 

on average, than the best heuristic policy.  Furthermore, the optimal-control problem 

provides a 40% reduction in standard deviation of computing times over a set of 

independent runs of the algorithm on identical problem instances.  When we fix the 

number of solver iterations in the first stage and then proceed with MPC, we improve the 

computing time, on average, by nearly 47% and reduce the standard deviation between 

runs by more than one half.   

The application of the discrete-time optimal-control problem to a larger multi-

commodity network-flow problem shows an 8.4% improvement, on average, in 

computational time over the best heuristic policy with essentially the same variation of 

overall computational time between the 20 independent runs.   With the first-stage 

modification to Model-Predictive Control, we improve computing time by 40%, on 

average, compared to the same heuristic policy and reduce standard deviation between 

runs by 44%.   

The algorithm developed to solve nonlinear stochastic programs shows 

considerable promise and offers significant potential for further study. 
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